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X-ray diffraction peak profiles are calculated by the Monte Carlo method for

arbitrarily correlated dislocations without making any approximations or

simplifications. The arrangement of dislocations in pairs with opposite Burgers

vectors provides screening of the long-range strains. Moreover, any screening

can be modeled by appropriate distribution of the dislocation pairs. Analytical

description of the peak profiles is compared with the Monte Carlo results.

Symmetric peaks due to screw dislocations and asymmetric peaks due to edge

dislocations are simulated and analyzed.

1. Introduction

The broadening of X-ray diffraction peaks due to dislocation

displacement fields is a well established tool for studying

dislocated crystals. Since X-ray diffraction is sensitive to the

total displacements caused by all dislocations, the dislocation

density determination from the Bragg peak widths requires

the dislocation correlations to be accounted for. Krivoglaz &

Ryboshapka (1963) have shown in their seminal paper that the

shape of the X-ray diffraction peaks in a crystal containing

positionally uncorrelated straight dislocations is described by

the Fourier transform of the correlation function

GðrÞ ¼ exp½��r2 lnðR=rÞ�: ð1Þ

Here r = jrj is a distance in the plane normal to the dislocation

lines (r is a two-dimensional radius vector), � is the dislocation

density and R is the sample size. We skip here, for the purpose

of a qualitative discussion, some factors that are of the order

of unity. They are restored in the detailed calculations below.

Equation (1) predicts that the diffraction peak width

increases with an increased sample size and diverges for an

infinite sample. Krivoglaz & Ryboshapka (1963) argued that

the divergence is very slow (logarithmic) and the peak width

remains finite for any reasonable size. Later on, Wilkens

(1969, 1970a,b) pointed out that the elastic energy of a crystal

with dislocations diverges in just the same way as the corre-

lation function (1). He proposed a ‘restrictedly random’

dislocation distribution, such that the dislocations arrange in

blocks and restrict their total strain field to within the block.

The correlation function derived for the restrictedly random

dislocation distribution (Wilkens, 1970a,b) retains the func-

tional form (1), where R becomes the block size. Then, both

the elastic energy and the correlation function (1) remain

finite. Wilkens (1970a) proposed to characterize the block size

by a dimensionless parameter M = R=rd, where rd = ��1=2 is the

mean distance between dislocations. The fits of the experi-

mental peak profiles by equation (1) for such diverse poly-

crystalline materials as copper, sodium chloride and silicon

nitride (Wilkens, 1976; Ungar et al., 1984, 1989, 2001), as well

as for threading dislocations in gallium nitride epitaxial films

(Kaganer et al., 2005), give values of the parameter M in a

range from 1 to 3, thus pointing to a strong screening of a

dislocation strain field by just the neighboring dislocations.

Levine & Thomson (1997) and Kamminga & Delhez (2000)

used the Monte Carlo method to model the Wilkens restrict-

edly random dislocation distribution. In both works, several

hundreds of uncorrelated parallel dislocations (with equal

numbers of dislocations having opposite Burgers vectors)

were placed at random in a cylinder of radius R. The calcu-

lated diffraction peak profile (Levine & Thomson, 1997) or the

correlation function GðrÞ (Kamminga & Delhez, 2000)

obtained from such a dislocation distribution were averaged

over a large number of independent samplings, keeping

constant the cylinder radius and number of dislocations. Such

a model corresponds to grains in a polycrystal, with the grain

size R large compared with the mean distance between

dislocations rd. The grain boundaries restrict strain fields of

the dislocations within the grain, so that the dislocations of

surrounding grains do not need to be included in the calcu-

lation. This model corresponds to values of the Wilkens

parameter M> 10. The distinction between the block size in

the Wilkens model and the sample size in the Krivoglaz &

Ryaboshapka treatment becomes subtle. On the other hand,

the analysis of the experimental peak profiles mentioned

above leads to notably smaller values of M, from 1 to 3. If a

corresponding block with just a few dislocations is considered,



one can hardly assume that the dislocation strain field does not

penetrate to the neighboring blocks.

The initial Wilkens idea that the dislocations rearrange to

minimize the total elastic strain has been supported by Zaiser

et al. (2001) and Csikor & Groma (2004), who modeled the

process of elastic relaxation in a system of initially uncorre-

lated dislocations. They found that dislocations of opposite

sign tend to form pairs, while dislocations of the same sign

tend to form walls. The exponential distribution of the

distances in the dislocation pairs has been found, with the

mean distance between dislocations in the pair comparable

with the average dislocation separation. The strain field of a

dislocation pair is not restricted to within a block. The strain

fields of the dislocation pairs overlap.

We show in the present paper that the arrangement of the

dislocations of opposite sign in pairs gives rise to a strain field

screening that provides the correlation function (1) with a

cutoff distance R much smaller than the sample size. More-

over, any screening leading to (1) can be modeled by the

dislocation pairs with the appropriate distribution of distances

between dislocations in the pair. The cutoff distance R is

comparable with the mean separation between dislocations in

the pair and can be of the same order or larger than the

average distance between dislocations in the sample rd. We

avoid calling these pairs dipoles, since the dislocation dipole is

usually considered as a pair with the distance between dislo-

cations much smaller than the distance between dipoles.

Theoretical analysis of the X-ray diffraction from dislocation

dipoles (Pototskaya & Ryboshapka, 1968; Krivoglaz, 1996) is

not applicable in our case, because of the overlapping dislo-

cation pairs.

We calculate in the present paper, using the Monte Carlo

method, diffraction peak profiles for distributions of screw and

edge dislocations with different types of correlations. Recently

we have shown, in an example of diffraction peak profiles

from misfit dislocations in epitaxial films, that the Monte Carlo

method can be successfully applied to any dislocation distri-

bution with arbitrary predefined positional correlations

(Kaganer et al., 2009; Kaganer & Sabelfeld, 2009). Once the

positional correlations between dislocations are given, the

Monte Carlo calculations do not require any further approx-

imations or simplifications. The diffraction peak profiles thus

obtained can be used instead of experimental data to test the

approximate analytical formulas. An advantage is full control

over all statistical parameters of the dislocation distribution.

We compare the Monte Carlo results with equation (1) and

its generalizations. The pairs of screw dislocations give rise

to symmetric peaks. The pairs of edge dislocations provide

asymmetric peaks if pairs of either vacancy or interstitial type

dominate.

2. Theory

2.1. Intensity and correlation function

The kinematical X-ray diffraction intensity in the vicinity

of a reciprocal-lattice point Q from a crystal distorted by

displacement fields of the defects is given by the product

IðqÞ ¼ jFQj
2SðqÞ; ð2Þ

where the complex structure amplitude FQ describes scat-

tering from the average unit cell and the real-valued structure

factor SðqÞ is due to a disorder of the unit cells on distances

much larger than the unit-cell size. Here q is a small deviation

from the reciprocal-lattice vector Q. If disorder is absent,

the structure factor SðqÞ reduces to a delta function �ðqÞ
describing (in the kinematical approximation) the sharp Bragg

peaks of an ideal infinite crystal. The crystal lattice defects

may reduce intensities of Bragg reflections, shift the Bragg

peaks to q 6¼ 0 and cause diffuse scattering around them

(Krivoglaz, 1996).

The structure factor for a crystal distorted by strain fields of

defects is given by the Fourier integral

SðqÞ ¼
R

GðrÞ expðiq � rÞ dr ð3Þ

of the pair correlation function

GðrÞ ¼ exp i½Q �Uðr1Þ �Q �Uðr2Þ�
� �� �

: ð4Þ

We consider here translationally invariant systems, so that the

correlations depend only on the distance between two points

r = r1 � r2. The total displacement field caused at the point r by

all defects is equal to UðrÞ. The angular brackets . . .h i in (4)

denote the statistical average over the whole ensemble of

defects. The structure factor (3) contains both the coherent

and diffuse parts. In an ideal crystal, UðrÞ � 0, it reduces to a

delta function, SðqÞ = ð2�Þ3�ðqÞ. Writing (3) as a continuous

integral rather than a discrete sum over all atoms, we restrict

ourselves to the vicinity of a reciprocal-lattice point Q. In

other words, the wavevectors jqj are small compared with jQj.

Then, the defects are described by their elastic displacement

fields. Atomic structures of the defects, in particular disloca-

tion cores, are not considered. They are needed to study

intensity distributions in wide ranges of wavevectors, from one

reciprocal-lattice point to the other.

The formulas in this section are quite general and can be

applied to a crystal containing arbitrary defect distributions.

Point defects (impurities, clusters, dislocation loops), line

defects (dislocations) and planar defects (stacking faults,

twins) can be considered simultaneously. They are treated as

different defect types. Dislocations with different Burgers

vectors, in particular with the opposite Burgers vectors, are

considered as different defect types as well. We denote by

u�ðr� n�jÞ the displacement field at the point r due to a defect

of type � located at the position n�j. Point defects are specified

by three-dimensional vectors n�j of defect center positions,

straight dislocations are specified by two-dimensional vectors

in a plane perpendicular to the dislocation lines, and planar

defects are specified by the coordinate along a line normal to

the defect plane. The integrals over n below imply three-,

two- or one-dimensional integration, respectively. The total

displacement is equal, due to linear elasticity, to the sum of

displacements from individual defects,

UðrÞ ¼
P
�;j

u�ðr� n�jÞ: ð5Þ
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The statistical average (4) is the average over random defect

positions n�j for each defect type, which was performed by

Krivoglaz et al. (Krivoglaz, 1961, 1996; Krivoglaz et al., 1983); a

brief outline of the derivation was also discussed by Kaganer

et al. (1997). The correlation function (4) can be represented

as

GðrÞ ¼ exp½TðrÞ�; ð6Þ

where the exponent TðrÞ is a result of the cumulant expansion

over single defects, their pairs, triplets and so on. Accounting

for pair correlations is sufficient for most practical applica-

tions, so that we write TðrÞ = T1ðrÞ þ T2ðrÞ, where the first term

describes the contribution from single defects and the second

from their pair correlations. The first term is

T1ðrÞ ¼
P
�

��
R

��ðr; nÞ dn; ð7Þ

where �� is the density of defects of type �. The term ��ðr; nÞ
is defined as

��ðr1 � r2; nÞ ¼ expfi½Q � u�ðr1 � nÞ �Q � u�ðr2 � nÞ�g � 1:

ð8Þ

The pair-correlations term is

T2ðrÞ ¼ ð1=2Þ
P
��0
����0

�
R

��ðr; nÞ��0 ðr; n0ÞC��0 ðn� n0Þ dn dn0; ð9Þ

where C��0 ðnÞ is a pair correlation function for dislocation

positions. We consider here, as above, spatially homogeneous

systems.

Dislocations are linear defects. We consider in this paper

arrays of straight dislocations parallel to each other. Their

positions can be represented by two-dimensional vectors n in a

plane perpendicular to the dislocation lines. Let the z axis be

along the dislocation lines. Then, the dislocation displacement

field uðx; yÞ depends on the coordinates x; y in the plane

perpendicular to the dislocation lines. Since the dislocation

displacements and hence the correlation function (4) do not

depend on z, the structure factor is

SðqÞ ¼ �ðqzÞ
R

Gðx; yÞ expðiqxxþ iqyyÞ dx dy: ð10Þ

The diffracted intensity concentrates in a disc in the reciprocal

space in the plane perpendicular to the dislocation lines.

The three-dimensional intensity distribution (10) is usually

not measured in a diffraction experiment. In a powder

diffraction experiment the average over particle orientations

is equivalent to integration of (10) over two components of the

vector q in the plane perpendicular to the reciprocal-lattice

vector Q (Warren, 1969). It reduces (10) to a one-dimensional

Fourier integral,

SðqÞ ¼
R

Gðx; y ¼ 0Þ expðiqxÞ dx; ð11Þ

where the x axis is chosen so that the reciprocal-lattice vector

Q lies in the ðx; zÞ plane. Very similarly, when a single crystal is

studied in a double-crystal diffraction experiment, a wide-

open detector accepts the scattered waves of all directions

around the direction of the diffracted beam. The integration is

performed over the plane perpendicular to the diffracted

beam. The scattered intensity is again described by (11), where

the x axis is now taken so that the diffracted beam lies in the

ðx; zÞ plane (Kaganer et al., 2005). We therefore concentrate in

further analysis on the one-dimensional Fourier integral (11).

Since the main effort is in the calculation of the correlation

function Gðx; yÞ, the generalization to a two-dimensional

Fourier integral (10) is straightforward.

The limiting value 2W = � limr!1 Re TðrÞ controls the

presence or absence of the coherent Bragg peak in the scat-

tering intensity (Krivoglaz, 1961, 1996). If W is finite, the

diffracted intensity contains the coherent contribution

proportional to expð�2WÞ�ðqÞ, and if W is infinite, the

coherent peak is absent. Both uncorrelated dislocations

(Krivoglaz & Ryboshapka, 1963) and dislocation dipoles

(Pototskaya & Ryboshapka, 1968) result in divergence of M,

but the laws are different. Let us discuss them now, since both

uncorrelated and correlated dislocations will be considered

below. In the limit r!1, the displacements at the points r1

and r2 in (4) are not correlated and equation (7) gives

W ¼
P
�

��
R

1� cos½Q � u�ðnÞ�
� �

dn: ð12Þ

The displacement field of a dislocation does not decay with the

distance from the dislocation, and the integral (12) diverges

proportionally to the system size L. The displacement field of

a dislocation dipole decays, on distances much larger than the

dipole width, as 1=�, and the two-dimensional integral (12)

contains a factor
R

d�=�, where the integration is performed

from the dipole width D to the system size L. Therefore,

W / lnðL=DÞ is finite in a finite sample but logarithmically

diverges with increasing its size. In the analysis of the peak

shapes below, we assume that the sample is large enough and

do not consider the coherent contribution. The diffraction

peaks analyzed below can be considered as diffuse peaks, in

the sense that the structure factor SðqÞ does not contain a

singularity.

2.2. Screening due to dislocation correlations

The aim of this section is to find minimum requirements for

dislocation correlations that provide screening of the long-

range strain fields, so that the length R in (1) does not depend

on the sample size. Wilkens’ restrictedly random distribution

is one possible realization of screening. Krivoglaz et al. (1983)

considered several correlation functions for dislocation posi-

tions, assuming the same correlations for dislocations of the

same sign and those of opposite signs. We follow the line of

their analysis but allow different correlations.

The integral (7) collects contributions from all dislocations

uniformly distributed over the plane n. The calculation below

will show that the main contribution to the integral comes

from the far dislocations, whose distance from the origin � =

nj j is large compared with the distance r = r1 � r2

�� �� between

the points where the correlations are sought. Then, the

difference of displacements can be expanded in a Taylor series

to the first order,
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Q � u�ðr1 � nÞ �Q � u�ðr2 � nÞ � rkQlw�kl ¼ gbðr=�Þ��;

ð13Þ

where rk are the Cartesian coordinates of the vector r, sum-

mation over repeated indices is implied, and �� =

��ðQ̂Q; b̂b; r̂r; n̂nÞ is an angular factor of the order of 1 that

depends on the directions of all vectors involved in the

problem: scattering vector Q̂Q, Burgers vector b̂b, correlation

distance r̂r and dislocation position n̂n. The 1=� decay of

distortions is a general property of the dislocation elastic

fields. The factor gb = Qb=2� is proportional to the reflection

order. Elastic distortions due to defects of type � are defined

as

w�klðnÞ ¼ @u�l=@�k: ð14Þ

The approximation (13) makes sense for � 	 r. If a more

restrictive condition � 	 gbr is satisfied, the exponential

function in (8) can be expanded in series, since � ’ 1. The

first-order term in the expansion is imaginary. It originates

from (7), is linear in w�kl and can be written as

Im T1ðrÞ ¼ rkQlwkl; ð15Þ

where the mean distortions tensor wkl is the result of the

average of the dislocation distortions,

wkl ¼
P
�

��
R

w�klðnÞ dn: ð16Þ

The term Im T1ðrÞ is linear in r and describes, on the Fourier

transformation (3), the shift of the Bragg peak due to mean

distortions.

The second-order term of the integral (7) contributes to the

real part of T1ðrÞ,

Re T1ðrÞ ¼ �ð1=2Þ
P
�

��
R

gbðr=�Þ��

� �2
dn: ð17Þ

The integral can be calculated in polar coordinates, n = ð�; �Þ,

Re T1ðrÞ ¼ �ð1=2Þ�ðgbÞ2�r2
R

d�=�; ð18Þ

where the factor � is the result of the angular integration

� ¼
P
�

��=�ð Þ
R2�
0

�2
� d�; ð19Þ

and � =
P

� �� is the total dislocation density. The ratio ��=� is

the fraction of dislocations of the type �. The factor � defined

by (19), also called ‘the contrast factor’, is a well defined

quantity whose proper value is needed for the accurate

dislocation density determination. It was calculated for

different crystal symmetries, anisotropies and dislocation

arrangements in a number of papers. We refer to the most

recent publication (Martinez-Garcia et al., 2009) that also

reviews previous works. Below we give simple expressions for

� in the dislocation configurations that we study.

The radial integral in (18) diverges at both �! 0 and

�!1. It has to be calculated with the lower limit of the

order of gbr, which is the applicability limit of the expansion

leading to (17), and the upper limit of the order of the sample

size L. Finally we obtain

Re T1ðrÞ ¼ �ð1=2Þ�ðgbÞ
2�r2 lnð& 0L=gbrÞ; ð20Þ

where & 0 ’ 1 is a constant factor. This form of the correlation

function for uncorrelated dislocations was obtained by

Krivoglaz & Ryboshapka (1963).

Let us estimate now the contribution to the integral (7)

from the region � 
 gbr, which we excluded above. Since �j j
is always less than 2, the contribution to the integral does not

exceed 2�ðgbÞ
2�r2. This contribution is negligible if the loga-

rithmic term in (20) is much larger than unity. Krivoglaz &

Ryboshapka (1963) concluded that the applicability of the

approximation (20) requires not only the sample size L to be

large compared with the mean distance between dislocations

rd = ��1=2, but its logarthm to be large: lnðL=rdÞ 	 1. One may

expect, however, that the applicability of (20) is broader. In

the region � 
 gbr, the argument of the exponential function

in (8) is large and strongly varies as a function of n, so that the

exponent is averaged to zero on the integration (7). Then, the

contribution of this region to the correlation function (20) can

be estimated as ��ðgbÞ2�r2. Its addition will not change the

functional form of the expression (20), but only the parameter

L in it. Since L is an experimentally ill-defined quantity, the

use of it as a free parameter allows the formula (20) to be

applied in a broader range than the one limited by its

applicability restriction. The same arguments can be used for

the correlation term below.

Let us proceed to the evaluation of the second-order term

(9). Using (13) in the same approximations as above, we

obtain

Re T2ðrÞ ¼ � ð1=2Þ
X
�;�0

����0 ðgbÞ2r2

�

Z
��ðn̂nÞ��0 ðn̂

0n0Þ

��0
C��0 ðn� n0Þ dn dn0: ð21Þ

We expect that the dislocations are decorrelated on large

distances, so that the correlation functions C��0 ðnÞ tend to zero

as � exceeds some correlation length Rc. The correlation

length is small compared with the sample size L. Hence, the

integration range in (21) is limited by n� n0
�� ��<

�Rc, while the

main contribution to the integral comes from � 	 Rc for the

same reasons as above. Since the distance n� n0
�� �� is small

compared with �, we can approximate ��0 in the denominator

by �2 and replace ��0 ðn̂
0n0Þ with ��0 ðn̂nÞ. Then, we obtain a

product of three separate integrals,

Re T2ðrÞ ¼ � ð1=2Þ
P
�;�0
����0 ðgbÞ

2
r2

�
R2�
0

����0 d�
R

C��0 ðn
0
Þ dn0

R
d�=�: ð22Þ

The integration over � in (22) is performed from a distance of

the order of Rc to a distance of the order of L. The resulting

term is lnð& 00L=RcÞ, where & 00 ’ 1 is a constant.

Let us consider dislocations with opposite Burgers vectors.

Their angular factors �þ and �� have opposite values, �þ =

���. Then, (22) becomes
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Re T2ðrÞ ¼ � ð1=2Þ�ðgbÞ
2
r2 ln & 00L=Rcð Þ

�
R
�2
þCþþðnÞ þ �

2
�C��ðnÞ

�
� 2�þ��C�ðnÞ

�
dn: ð23Þ

We can now formulate the general condition for the screening

of the dislocation strain fields: the sum of the first-order term

(20) and the second-order term (23) does not depend on the

sample size L if the following condition is satisfied,R
�2
þCþþðnÞ þ �

2
�C��ðnÞ � 2�þ��C�ðnÞ

� �
dnþ � ¼ 0: ð24Þ

Then, the real part of the correlation function TðrÞ =

T1ðrÞ þ T2ðrÞ is given by

Re TðrÞ ¼ �ð1=2Þ�ðgbÞ2�r2 ln &Rc=gbrð Þ; ð25Þ

and does not depend on the sample size L. Here & = & 0=& 00 ’ 1

is a constant.

The condition (24) can be satisfied by various kinds of

dislocation distributions. For example, if C� is small, the

integrals of Cþþ and C�� need to be negative. This case

implies an intermittent behavior of the dislocation positions:

a group of dense dislocations is followed by a group of rare

dislocations. Krivoglaz et al. (1983) imposed another condi-

tion, CþþðnÞ = C��ðnÞ = �C�ðnÞ, with the aim of simplifying

the problem to a single correlation function. However, the

correlations between dislocations with the same and with the

opposite Burgers vectors are qualitatively different. Modeling

of the relaxation in a system of initially uncorrelated dis-

locations (Zaiser et al., 2001; Csikor & Groma, 2004) shows

that the dislocations with opposite Burgers vectors reduce the

elastic strain energy by making pairs, while dislocations with

the same Burgers vectors tend to arrange in walls. In the

present paper, we consider the simplest model that neglects

the correlations between dislocations with the same Burgers

vector direction, CþþðnÞ = C��ðnÞ = 0, and consider only

correlations between the dislocations with opposite Burgers

vectors, C�ðnÞ 6¼ 0. We take equal densities of the dislocations

with opposite Burgers vectors, �þ = �� = �=2. Then, the

screening of the dislocation strain fields by surrounding

dislocations is achieved when

�þ
R

C�ðnÞ dn ¼ 1: ð26Þ

The normalization condition (26) allows �þC�ðnÞ to be treated

as a probability density. It describes dislocations of opposite

sign generated in pairs, with the distance n between disloca-

tions in the pair realized by the probability density �þC�ðnÞ.
Correlations between pairs are absent. The total probability

density of finding two dislocations of opposite sign at a

distance n is equal to �þ½C�ðnÞ þ 1�: it is the sum of the

probability density for the dislocations of the same pair, equal

to �þCðnÞ, and dislocations of different pairs, equal to �þ,

since the dislocations of different pairs are uncorrelated. Thus,

the pair correlation function C�ðnÞ for any dislocation distri-

bution that provides the size-independent TðrÞ given by (25)

can be modeled by dislocation pairs with the distances in the

pairs distributed with the probability density �þC�ðnÞ.
If the characteristic distance between dislocations in the

pair Rc is small compared with the distance between pairs rd,

the pairs can be considered as well separated dislocation

dipoles. The X-ray scattering from dislocation dipoles can be

considered separately (Pototskaya & Ryboshapka, 1968;

Krivoglaz, 1996) and we concentrate in the present analysis on

the overlapping dislocation pairs, Rc  rd .

The factor & that is contained in the logarithmic term of (25)

depends on the dislocation correlations. It was calculated by

Krivoglaz et al. (1983) for several correlation functions of

dislocation positions that they considered. We do not attempt

to calculate the factor & for the dislocation correlation models

that we study, for the following reasons. First, the correlation

function C�ðnÞ and even its correlation length Rc are not

known in any X-ray diffraction experiment. Even if the

product &Rc is determined by fitting the diffraction peaks with

the use of (25), it is not possible to separate the two factors

from the product. Secondly, rigorously speaking, the applic-

ability of (25) requires the ratio M = Rc=rd of the correlation

length Rc to the mean distance between dislocations rd to be so

large that ln M 	 1. However, as we already discussed in the

Introduction, the fits of the experimental diffraction peaks

from various systems to the peak profiles calculated on the

basis of (25) give values of M in the range from 1 to 3. The

broad applicability of (25) can be explained, as discussed

above, by incorporating the corrections to (25) into the loga-

rithmic term. Then, the factor & depends on the correlation

length Rc as well as the reflection order gb. It is therefore

reasonable to consider the product R = &Rc as a single factor,

the cutoff radius, that has to be determined from the fit of (25)

to a measured, or Monte Carlo calculated, peak profile.

In x3 we calculate the X-ray diffraction peaks by generating

dislocation pairs with various correlations and calculating the

correlation function GðrÞ directly from its definition (4), using

the Monte Carlo method. The diffraction peak obtained by its

Fourier transformation (3) has an advantage in comparison

with the experiment in allowing direct access to the dislocation

distribution. Then, by comparing the modeled diffraction

peaks with the ones calculated using approximation (25), we

can establish its practical applicability range.

2.3. Elastic strain energy of the dislocated crystal

The elastic strain energy of a crystal with dislocations is a

result of the spatial integration of squared distortions, very

similarly to (17). If dislocations are spatially uncorrelated (and

not arranged in pairs), the elastic energy diverges as lnðL=a0Þ,

where L is the sample size and a0 is the dislocation core size,

again very similarly to (20). Wilkens (1969, 1970a,b) proposed,

based on this profound analogy, that the dislocations are

correlated in such a way that their strains are screened by

neighboring dislocations and hence L is not the sample size

but a cutoff length of the screening. Hence, the cutoff length

obtained from the fits of the diffraction peaks can be used to

evaluate the elastic energy stored in the crystal with disloca-

tions (Borbély et al., 2000; Garabagh et al., 2008).

The cutoff length Rel to describe the elastic energy is of

the same order, but not necessarily the same as the cutoff

length R = &Rc that describes the diffraction peaks in (25). The

Acta Cryst. (2010). A66, 703–716 Kaganer and Sabelfeld � X-ray diffraction peaks from correlated dislocations 707

research papers



uncertainty originates in the lower limit of the integral (18),

which is of the order of gbr. In contrast, the lower integration

limit of the elastic energy is the dislocation core size a0. Below,

in x3, we calculate the diffraction peak profiles and determine

the cutoff lengths R that follow from them. Here we calculate,

for the same screening models, the elastic cutoff lengths Rel.

This can be done analytically for the pair correlation functions

used in the Monte Carlo study below. Then, in x3.2, we

compare the cutoff lengths for the diffraction peaks and the

elastic energy, to obtain corrections needed for a reliable

strain energy calculation from the X-ray data.

The condition (26) allows us to model the screening by

uncorrelated pairs of dislocations, with the probability density

of the distance s between dislocations in the pair equal to

�þC�ðsÞ. We consider here all orientations of the pairs with

equal probability, as simulated in the Monte Carlo study of

screw dislocations in x3.2.

Since the pairs are not correlated, the mean of the squared

total strain is equal to the sum of means of the squared strains

of individual pairs. Hence, the elastic energy of the crystal with

uncorrelated dislocation pairs is equal to the sum of elastic

energies of the pairs. The elastic energy of a pair of screw

dislocations per unit length of the dislocation lines is equal to

	b2=ð2�Þ lnðs=a0Þ, where 	 is the shear modulus and s is the

distance between dislocations in the pair. Therefore, the

elastic energy density of the crystal with dislocation pairs is

E ¼ ð	b2=4�Þ� lnðs=a0Þ
� �

; ð27Þ

since the density of the pairs is �=2.

The average (27) over the distance s between dislocations in

the pair is

E ¼ 	b2=4�
	 


�
R1
0

lnðs=a0ÞC�ðsÞ ds: ð28Þ

For the exponential and Gaussian pair distribution functions

C�ðsÞ that are used in x3.2, the integration can be performed

analytically using the integrals

R1
0

expð�cxÞ ln x dx ¼ �ð
 þ ln cÞ=c ð29Þ

and

R1
0

exp �ðcxÞ
2

� �
ln x dx ¼ ��1=2ð
 þ ln 4þ 2 ln cÞ=ð4cÞ; ð30Þ

where 
 = 0:5772 . . . is the Euler constant.

The result of the integration (28) can be written as

E ¼ 	b2=4�
	 


� ln Rel=a0ð Þ: ð31Þ

The ratio of the cutoff distance Rel in the elastic energy density

(31) to the mean distance between dislocations in the pair Rc

depends on the type of dislocation distribution. We find Rel=Rc

= expð�
Þ ’ 0.56 for the exponential distribution and Rel=Rc

= 21=2 exp½�ð
 þ ln 4Þ=2� ’ 0.53 for the Gaussian distribution.

If all pairs have the same distance between dislocations (the

unimodal distribution), the ratio is simply Rel=Rc = 1.

3. Monte Carlo calculation of the X-ray diffraction
peaks

3.1. Intensity calculation by the Monte Carlo method

Both averaging over dislocation statistics (4) and the

spatial integration (3) can be performed by the Monte Carlo

method. Recently we have studied, in this way, the X-ray

diffraction peaks from misfit dislocations in epitaxial films

(Kaganer & Sabelfeld, 2009), where the spatial integration was

three-dimensional. In the present work we need just a one-

dimensional spatial integral (11). We find it computationally

more efficient to use the Monte Carlo method for calculation

of GðxÞ and to apply the standard quadrature formulas to

calculate the Fourier integral (11).

The correlation function could also be directly calculated

from (7) and (9). Such a calculation is effective only when all

dislocation pairs have the same distance between dislocations

in the pair and the same orientation of each pair. In this case

the dislocation pairs can be treated as one dislocation type in

(5). The displacement u�ðrÞ in that equation becomes the

displacement field of the dislocation pair. Dislocation pairs of

random widths and orientations, which we consider below,

need to be treated as different defect types, which results in

additional integrations in (7) and (9). In this case the Monte

Carlo calculation of GðxÞ is favored.

To calculate GðxÞ, a set of dislocations is generated first. The

size of the simulation cell was always chosen large enough to

avoid its influence on the result. The number of dislocations

in a set varied in our calculations from hundreds to tens of

thousands, depending on the correlation radius Rc. The

dislocation distribution is defined by the screening condition

(26): dislocations of opposite sign are generated by pairs, with

the random distance n between dislocations in the pair

sampled from the probability density �þC�ðnÞ. Then, the

contribution of the nth generated dislocation set to the X-ray

scattering intensity,

gnðxÞ ¼ expfi½Q �Uðr1Þ �Q �Uðr2Þ�g; ð32Þ

is calculated on a predefined grid of points x. The total

displacements UðrÞ are calculated, as a sum (5) over disloca-

tion displacements, at two points r1 and r2 separated by x. The

function GðxÞ is approximated by

GNðxÞ ¼ ð1=NÞ
PN
n¼1

gnðxÞ; ð33Þ

where N is the number of the generated dislocation sets. The

statistical error of the approximation can be obtained by

calculating in parallel the dispersion of gnðxÞ, as we have done

in the previous study of the misfit dislocations (Kaganer &

Sabelfeld, 2009).

The numerical Fourier transformation of the correlation

function is fairly sensitive to the edge of the x range where the

correlation function GðxÞ is calculated. To avoid unphysical

oscillations in the calculated SðqÞ and reduce the amount of

computations, we include the finite experimental resolution in

the calculations from the very beginning, as has been done

in the study of the X-ray scattering from misfit dislocations
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(Kaganer et al., 1997; Kaganer & Sabelfeld, 2009). The

convolution of the intensity (11) with a resolution function

RðqÞ can be rewritten, using the convolution theorem, as the

Fourier transformation of the product

SðqÞ ¼
R1
�1

GðxÞ ~RRðxÞ expðiqxÞ dx; ð34Þ

where ~RRðxÞ is the Fourier transformation ofRðqÞ. This is quite

similar to the appropriate choice of the resolution in the X-ray

diffraction experiment. An example is given in Fig. 2 of

Kaganer & Sabelfeld (2009). In the Monte Carlo calculations

presented below, we always choose a Gaussian function ~RRðxÞ
so broad [and therefore the resolution function RðqÞ so

narrow] that the ‘instrumental’ broadening of the peak is

negligible. Accordingly, we do not include the resolution in the

approximate calculations below.

3.2. Diffraction peaks from correlated screw dislocations

First, let us consider screw dislocations, which served as a

touchstone in the initial studies (Krivoglaz & Ryboshapka,

1963; Wilkens, 1970a,b). Burgers vectors and displacements of

screw dislocations have only a z component, along the dislo-

cation lines. Only the z component of the scattering vector Q

is essential, and, for a dislocation at the origin, Q � u =

gb arctanðy=xÞ, where gb = Qzbz=2�. Figs. 1(a) and 1(b)

illustrate the generated dislocation sets. They present a small

part of the simulation area: the linear sizes of the whole

simulated distribution vary from tens to hundreds, in units of

the average dislocation distance. Dislocations with the oppo-

site Burgers vectors (shown by open and filled circles) are

generated by pairs. Orientations of the vectors connecting two

dislocations of the pair are chosen at random from 0 to 2�, and

the distances between dislocations in the pairs are chosen

from the exponential distribution with the mean distance Rc.

Below we also study other distributions of the dislocation pair

widths. The choice of the exponential distribution agrees with

the results of Csikor & Groma (2004). They generated a two-

dimensional array of initially uncorrelated edge dislocations

and allowed them to move and hence reduce the elastic

energy. The final state reveals an exponential distribution of

the pairs of opposite sign dislocations, with Rc ’ 0.5 [see

equation (32) by Csikor & Groma (2004)].

Dislocation distributions simulated for two different

correlation lengths, Rc = 1 and 5, are shown in Figs. 1(a) and

1(b), respectively. Hereafter, we take the mean distance

between dislocations rd = ��1=2 as the unit length. Accordingly,

the wavevectors q are measured in units of r�1
d .

The correlation functions GðxÞ calculated by (33) using the

Monte Carlo method are presented in Fig. 1(c). They are even,

Gð�xÞ = GðxÞ, due to the symmetry of the problem. Hence, the

Fourier transformation (34) is reduced to

SðqÞ ¼ 2
R1
0

GsðxÞ cosðqxÞ dx; ð35Þ

where GsðxÞ is the even correlation function for screw dis-

locations, and we skip the resolution function in the formulas.

Diffraction peaks obtained by Fourier transformation (35) of

these correlation functions are shown in Fig. 2 by thick gray

lines. Since the diffraction peaks are calculated without any

simplifying approximation, they are well suited, better than

the experimental data, to test the approximate description of

the peak profiles.

Our analysis is based on the approximation (20) and we

denote R = &Rc. The length R can be considered as a ‘cutoff

length’, the quantity that can be determined from an experi-

ment without knowing the correlation length Rc. We also

modify the expression (20), as was suggested earlier (Kaganer

et al., 2005), to avoid the unphysical oscillations that arise from

the Fourier integration in finite limits, and to be able to extend

the integration over x to infinite limits. We represent the

correlation function as

GsðxÞ ¼ exp �
1

2
�sðgbÞ

2�x2 ln
2R=gbþ x

x

� �
: ð36Þ
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Figure 1
Monte Carlo calculation of the correlated screw dislocations. (a, b) Dislocation arrangements for the exponential pair distribution function with
correlation lengths Rc = 1 and 5. Open and filled circles represent dislocations with the opposite Burgers vectors. (c) Correlation functions GðxÞ
calculated by the Monte Carlo method.



The choice of the functional form (36) is discussed in

Appendix A. The factor 2 in the logarithmic term is introduced

to keep agreement with the Wilkens definition of the para-

meter M = R�1=2.

The angular factor �s for screw dislocations, with b along

the z axis and r, n in the xy plane, can be easily calculated. It is

obtained by integrating in (19) the factor � = cos�, where � is

the angle between r and n. Hence, we have �s = �. We fit the

intensities calculated by the Monte Carlo method by an

approximate peak profile given by (35) and (36). It contains

just two free parameters, the dislocation density � and the

cutoff length R.

Fig. 2 shows examples of the fits of the peak profiles

calculated by the Monte Carlo method (thick gray lines) to the

Fourier-transformed correlation function (36) (thin black

lines). Excellent fits are obtained in the whole range of

parameters, except the narrow central peak of the top curve in

Figs. 2(a) and 2(b). In this case the mean distance between

dislocations in the pair Rc = 0.5 is smaller than the mean

distance between dislocations, so that non-overlapping dis-

location dipoles are formed and, because of the rather small

size of the simulated system, the coherent scattering peak

becomes visible. We do not consider small correlation lengths

Rc < 1 and the coherent peaks in the further analysis.

We fit the diffraction peaks to one and the same approx-

imation (36) for the correlation function in two different ways:

either the mean-squared difference between the Monte Carlo

calculated intensity and the approximation is minimized (the

linear fit) or the mean-squared difference of their logarithms is

minimized (the logarithmic fit). These two ways of fitting

correspond to different experiments. In the X-ray diffraction

study of dislocations in single crystals, in particular in epitaxial

films (Kaganer et al., 2005, 2009), the scattered intensity can be

measured in a fairly large momentum range around each

Bragg peak. Then, the asymptotic scattering at large q can be

measured. The insert in Fig. 2(b) shows that all diffraction

peaks converge to the same q�3 asymptote. This asymptotic

behavior is a general feature of the dislocation strain field. It is

properly described by the correlation function (36) due to the

logarithmic term in the exponent. This asymptotic behavior is

observed experimentally (Groma, 1998; Groma & Székely,

2000; Kaganer et al., 2005, 2006) and allows accurate disloca-

tion density determination. The logarithmic fits are shown in

Figs. 2(b) and 2(d). The fitted parameters, the dislocation

density � and the cutoff distance R, are primarily determined

by the asymptotic scattering region. Such fits were used by

Kaganer et al. (2005) in the study of threading dislocations in

GaN epitaxial films. On the other hand, these fits are not

perfect at the maxima of scattered intensity.

In the studies of polycrystalline or powder samples, the

scattered intensity can be attributed to a certain diffraction

peak only in a limited q range. The asymptotic regions of

different peaks overlap after the powder average over random

orientations of the crystallites. It remains to use the central

parts of the peaks and fit them on the linear scale. The linear

fits in Figs. 2(a) and 2(c) primarily describe the intensity

distribution near the maxima. Note that the q range in these

figures is much smaller than in Figs. 2(b) and 2(d). The peaks

are also well described by the correlation function (36), except

the case of small correlation lengths Rc < 1, which we do not

analyze in this paper.

The fit results for both linear and logarithmic fits are

summarized in Fig. 3. The fit parameters for the linear fits are

shown by open symbols, and those for logarithmic fits by full

symbols. We compare four different types of dislocation

correlations. The distance between dislocations in the pair

follows either exponential distribution (squares on the

figures), Gaussian distribution (circles) or all dislocation pairs

have the same separation Rc (up triangles). We also simulated

the Wilkens restrictedly random dislocation distribution

(down triangles). This model is described in more detail below,

and additional results are presented in Fig. 4.

Since the mean distance between dislocations is taken as the

unit length in Monte Carlo calculations, the dislocation density

is just 1 in these units. The dislocation densities obtained by

the fits to (36) are very close to this value. For logarithmic fits,

when Rc  2, the values obtained for different dislocation

distributions are within 1� 0:04. Even for Rc = 0.5, which is

out of the expected applicability range of the approximation

(36), the error is less than 40%. Such accuracy is reached due

to the leading contribution from the asymptotic scattering

region. This accuracy is even better than needed for the

analysis of the experimental data, where larger errors can be
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Figure 2
X-ray diffraction peaks for correlated screw dislocations. Results of the
Monte Carlo calculation (thick gray lines) are fitted to equations (35) and
(36) (thin black lines). (a, b) Calculations for different correlation lengths
at the same reflection with gb = 1. (c, d) Calculations in different
reflections for the same correlation length Rc = 1. The fits in (a, c) are
made on a linear scale, by minimizing the mean-squared difference of
intensities. The fits in (b, d) are made on a logarithmic scale, by
minimizing the mean-squared difference of the logarithms of intensities.
Curves in (b, d) are offset vertically for clarity.



expected from non-uniformity of the dislocation distribution

and bending of the dislocation lines. These results provide a

firm ground for accurate dislocation density determination

from the X-ray diffraction peaks with the use of the approx-

imation (36) (Kaganer et al., 2005). The linear fit overestimates

the dislocation density up to 30%, depending on the type of

dislocation correlations. Such accuracy seems sufficient for

practical applications, however. Thus, the fit results show that

the approximation (36) provides an accurate and reliable way

for dislocation density determination from the X-ray diffrac-

tion peak profiles.

The second parameter obtained from the fits, the cutoff

distance R, is shown in Figs. 3(b) and 3(c). It coincides with the

Wilkens dimensionless parameter M, since the mean distance

between dislocations is taken as a unit length. A strong

variation of this parameter, depending on the type of the

dislocation correlations, is evident. R is approximately

proportional to the input parameter, the correlation length Rc,

so that the ratio & = R=Rc is close to a constant. For the

logarithmic fit, the value of & for the first-order reflection, gb =

1, is approximately 0.3 for the Wilkens restrictedly random

dislocation distribution, 1.5 for the exponential and Gaussian

distributions, and 9 when all dislocation pairs have the same

separation (unimodal distribution). For the linear fit, it is 0.3

for the Wilkens restrictedly random dislocation distribution,

0.8 for the Gaussian distribution, 1.7 for the exponential

distribution and 3 for the unimodal distribution. The cutoff

distances R also depend on the reflection order, see Fig. 3(c),

but they approach constant values for gb  5. Note that at

large gb the cutoff length R is close to the correlation length Rc

chosen on input.

We now describe the calculations for the Wilkens restrict-

edly random dislocation distribution model (Wilkens, 1970a,b,

1976) in more detail. In this model, the crystal is subdivided

into cells of equal size, each cell containing the same number

of dislocations, half of them having a Burgers vector þb and

another half�b. Fig. 4(a) shows such a dislocation distribution

with one pair of dislocations per cell. The cell area is equal to

2, since it contains two dislocations. Similarly, Fig. 4(b) shows a

distribution with three dislocation pairs per cell; the cell area is

6. The dislocations are distributed in the cells according to the

Wilkens model, but the dislocation displacement field is not

restricted to the cell that contains the dislocation. Rather, it

contributes to the total displacements in the whole simulated

area.

The results of the Monte Carlo calculation of the correla-

tion function GðxÞ for different cell sizes are presented in

Fig. 4(c). They are similar to those in Fig. 2, except for the case

of one dislocation pair per cell, where the oscillations due to

the cellular structure are evident. Diffraction peaks calculated
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Figure 4
Monte Carlo calculation of the diffraction peaks in the Wilkens
restrictedly random dislocation distribution model. (a, b) Dislocation
arrangements with 1 or 3 dislocation pairs per cell. Open and filled circles
represent dislocations with the opposite Burgers vectors. (c) Correlation
functions GðxÞ calculated by the Monte Carlo method. (d) Diffraction
peaks calculated by the Monte Carlo method (thick gray lines) and the
fits to the formulas (35) and (36) (thin black lines). The curves are shifted
vertically for clarity. The insert in (d) magnifies the peak of the top curve
(one pair of dislocations per cell).

Figure 3
Parameters obtained by the fits of the calculated peaks for different dislocation distributions: (a) dislocation density � at different correlation lengths Rc,
(b, c) cutoff length R at different correlation lengths Rc and reflection orders gb. The results of the linear fits are shown by open symbols and those of
logarithmic fits by full symbols.



by Fourier transformation (35) are shown in Fig. 4(d) by thick

gray lines. The cellular structure for one dislocation pair per

cell is visible also in the diffraction peak [see insert in

Fig. 4(d)]. The fits by formula (36) describe the peaks well

(thin black lines).

We can compare now the cutoff distances for elastic energy

Rel from x2.3 with the cutoff distances R obtained in the

present section by fits of the diffraction curves. The values of R

depend on the diffraction order, see Fig. 3(c), but approach

constant values for large gb (practically, gb  5). Using these

values for large gb, we find that, for all three types of distance

distributions, the ratio R=Rel is 1.2 for the linear fits of

diffraction peaks and 1 for the logarithmic fits, with a scat-

tering of �0:1 for different distributions. Since three different

types of distance distributions give very close ratios, we expect

that these values can be used to obtain the elastic cutoff length

Rel and the elastic energy density (31) for any dislocation

correlations. For low reflection orders, Fig. 3(c) reveals a

strong dependence of the diffraction cutoff length R on the

reflection order. For example, for the first-order reflection, gb

= 1, and the linear fit of the diffraction peaks, the ratio R=Rel,

varies from 2.2 for the exponential distribution to 8 for the

unimodal distribution. The result strongly depends on the

distribution of the dislocation distances in the pairs. The

distribution is not known in advance and cannot be deter-

mined from the diffraction peaks. Hence, the use of low-order

reflections introduces a large uncertainty in the elastic cutoff

length and in the estimate of the strain energy. The cutoff

lengths obtained from the higher-order reflections, gb  5, do

not depend on the distribution function and provide more

reliable determination of the elastic energy stored in the

dislocated crystal.

3.3. Edge dislocations and peak asymmetry

For the screw dislocations considered above, the Burgers

vectors are along the dislocation lines. The vector l in the

plane perpendicular to the dislocation lines directed from the

dislocation with Burgers vector �b to that with þb is always

perpendicular to b. We took all orientations of l for pairs of

screw dislocations as equally probable in the calculations of

the previous section. For edge dislocations studied in this

section, both b and l lie in the plane perpendicular to the

dislocation lines. If b is perpendicular to l, the dislocation pair

can correspond to either a stripe of an extra atomic plane

inserted between the dislocation lines or a stripe of an atomic

plane removed between the lines.

When one type of dislocation pair prevails, such dislocation

distributions can be treated as polarized (Groma et al., 1988;

Ungár et al., 1989; Groma & Monnet, 2002), since there is a

preferred direction from a dislocation with the Burgers vector

�b to that with the Burgers vector þb which can be consid-

ered as polarization. However, the dislocation pairs do not

form physical dipoles, like electrical charges. Rather, a

symmetry plane perpendicular to the line connecting dis-

locations in the pair is preserved. We call such dislocation

pairs interstitial if a stripe of an atomic plane is inserted

between the dislocation lines, and vacancy type if a stripe is

removed. If both interstitial and vacancy dislocation pairs are

present with equal probabilities, the diffraction peaks are very

similar to those from screw dislocations, and we do not present

them here. New effects arise when the probabilities are not

equal.

Figs. 5(a) and 5(b) show distributions of only vacancy pairs.

The pairs are oriented in two orthogonal directions, to keep

the fourfold symmetry. The positions of the pair centers are

random and uncorrelated. The distances between dislocations

in the pairs are taken from the exponential distribution with

the mean distance Rc equal to 1 and 5 in Figs. 5(a) and 5(b),

respectively.

The prevalence of either interstitial- or vacancy-type dis-

location pairs and the corresponding asymmetry of the

diffraction peaks described below is not specific to edge

dislocations. It could also arise for screw dislocations, if a

preferred direction from �b to þb is realized. However, an

asymmetry in the distribution of the edge dislocation pairs

seems more plausible. The vacancy-type pairs in Figs. 5(a) and

5(b) can be a result of condensation of vacancies in the crystal.

Similarly, a condensation of interstitials would result in the

opposite case of interstitial dislocation pairs.

Figs. 5(c) and 5(d) present the correlation function (4)

calculated for these dislocation distributions by the Monte

Carlo method. The correlation function is no longer a real

value but contains also an imaginary part. As a result, Fourier

transformation (34) of the correlation function gives rise to

the diffraction peaks shown in Fig. 6. The peaks are asym-
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Figure 5
Monte Carlo calculation of the correlated edge dislocations. (a, b)
Dislocation arrangements of vacancy-type dislocation pairs for the
exponential pair distribution function with the correlation lengths Rc = 1
and 5. The pairs are oriented in two orthogonal directions. (c, d)
Correlation functions GðxÞ calculated by the Monte Carlo method.



metric and their maxima are shifted with respect to q = 0.

These asymmetric peaks are obtained for a homogeneous

dislocation distribution, in contrast to the asymmetric peaks

due to an inhomogeneous dislocation distribution (Groma et

al., 1988; Groma, 1998; Groma & Monnet, 2002). The asym-

metry increases with the increasing reflection order gb and

decreases with the increased correlation length Rc.

Equations (35) and (36) are not sufficient in the present

case and need to be extended. We can return to the general

equations of x2 and apply them to uncorrelated dislocation

pairs. Each term in the sum (5) is now the displacement field of

the pair and the function TðrÞ in (6) is given by (7). Further

terms of the cumulant expansion are absent, since the pairs

are not correlated. The difference of displacements can be

expanded in Taylor series (13) under the same assumptions as

given in x2.2. Then, the exponent in (8) is expanded in a power

series. We denote the term of the order of r n as T ðnÞðrÞ, to

distinguish it from the terms of the cumulant expansion in (9).

The first-order term T ð1ÞðrÞ is non-zero if either vacancy- or

interstitial-type dislocation pairs predominate. This term (15)

is imaginary and linear over r, so that it can be written as

T ð1ÞðrÞ = iq0x. Calculating the average strain for uncorrelated

dislocation pairs with the mean distance between dislocations

in the pair Rc, we obtain

q0 ¼ gb�Rc=2: ð37Þ

Here gb = Qxbx=2�, and the factor 1=2 takes into account that

the peak shift is due to the pairs extended along the y axis,

while those along the x axis do not contribute to the peak shift.

Introduction of the first-order term T ð1ÞðrÞ into (34) trans-

forms the exponential term to exp½iðqþ q0Þx�, i.e. the average

strain provides a shift of the Bragg peak, as it should do.

The second-order term T ð2ÞðrÞ is real. With the same

reasoning as above, based on the discussion in Appendix A,

we represent it in the same way as equation (36),

GeðxÞ ¼ exp �
1

2
�eðgbÞ

2�x2 ln
2R=gbþ x

x

� �
; ð38Þ

where the contrast factor �e has to be calculated now for edge

dislocations. The calculation for edge dislocations with the

Burgers vector in x and y directions gives, respectively,

�e x ¼ �
5� 4�ð3� 2�Þ

8ð1� �Þ2
; �e y ¼ �

1� 4�þ 8�2

8ð1� �Þ2
; ð39Þ

where � is the Poisson ratio. We consider equal densities of

dislocations along and perpendicular to Q, so that the contrast

factor is the average �e = ð�e x þ �e yÞ=2. For the Poisson ratio

� = 1/3, it is equal to �e = 11�=32.

Evaluation of the peak asymmetry requires the third-order

term T ð3ÞðrÞ, cf. Groma et al. (1988). It is imaginary and the

calculation similar to that of the second-order term in x2.2

shows that this term is proportional to i�ðgbÞ
3
r3 lnð& 000Rc=gbrÞ,

where & 000 ’ 1 is a constant. We define the function

’ðxÞ ¼ a�ðgbÞ3x3 lnðRa=gbxÞ; ð40Þ

which contains two parameters, the asymmetry a and the

asymmetry cutoff length Ra = & 000Rc. Then, (34) can be

represented as

SðqÞ ¼ 2
R1
0

GeðxÞ cos ðqþ q0Þxþ ’ðxÞ
� �

dx: ð41Þ

Thin black lines in Fig. 6 are fits of the peak profiles calculated

by the Monte Carlo method to (38) and (41). The fit para-

meters are the peak position q0 , the dislocation density �, the

cutoff length R, the asymmetry a and its cutoff length Ra. The

peaks are perfectly described by (38) and (41). The peak

position is given by (37). The results of the fits of the dis-

location density � and the cutoff length R are very similar to

the results for screw dislocations in Fig. 3, and we do not

present them. The asymmetry a and its cutoff length Ra are

shown in Fig. 7. We find a ’ 0.1. The asymmetry cutoff length

Ra  1 shows rather large scattering of the values.

4. Discussion and summary

The kinematical X-ray diffraction theory allows, in principle,

calculation of the scattered intensity for a crystal with any

distribution of defects and their displacement fields. Practical

calculation, however, requires averaging (4) over statistics of

the defect distribution and spatial integration (3). Both inte-

grations can be performed simultaneously by the Monte Carlo

method (Kaganer & Sabelfeld, 2009). The powder average

over crystal orientations, as well as the intensity integration
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Figure 6
X-ray diffraction peaks for correlated edge dislocations. Results of the
Monte Carlo calculation (thick gray lines) are fitted to equations (38) and
(41) (thin black lines). (a, b) Calculations for different correlation lengths
at the same reflection with gb = 4. (c, d) Calculations in different
reflections for the same correlation length Rc = 2. The fits in (a, c) are
made on a linear scale, by minimizing the mean-squared difference of
intensities. The fits in (b, d) are made on a logarithmic scale, by
minimizing the mean-squared difference of the logarithms of intensities.
Curves are offset vertically for clarity.



over a wide-open detector in double-crystal diffraction from a

single crystal, reduces the spatial integration to a one-

dimensional integral (11). In this case the spatial integration

can be performed by standard quadratures, while the statis-

tical average (4) is performed by the Monte Carlo integration.

This is done in the present work.

Monte Carlo calculations include essential features of the

experiment. The dislocations are distributed at random over a

volume large enough to exclude the finite size effects. In our

practical calculations the number of dislocations in the simu-

lated sample varies from hundreds to tens of thousands,

depending on the correlation length of the dislocation distri-

bution. The correlation function (4) is calculated for separa-

tions much smaller than the sample size but large enough to

reveal the whole diffuse scattering pattern. The finite coher-

ence length of a diffraction experiment is included in the

intensity calculation (34). The coherence length is taken large

enough to avoid broadening of the diffuse peak.

The Wilkens idea, that the dislocations arrange to avoid the

divergence of the elastic energy, and the divergence of the

diffraction peak width is avoided at the same time, permits

a much broader class of dislocation correlations than just

the original restrictedly random dislocation distribution. The

arrangement of the dislocations with opposite Burgers vectors

in pairs provides the screening of the long-range strain field

and results in peak widths limited by the mean distance

between dislocations in the pair. The mean distance in the pair

can be larger than the average distance between dislocations,

so that the pairs overlap and cannot be considered as dipoles

with a dipole width small compared with the distance between

dipoles. Moreover, any screening due to pair correlations

between dislocations can be modeled by dislocation pairs with

the appropriate distribution of distances between dislocations

in the pair.

We have calculated diffraction peak profiles for different

types of pair correlations. The widths of the dislocation pairs

were distributed according to exponential and Gaussian laws,

or all pairs had the same distances. We also simulated the

Wilkens restrictedly random distribution by dividing the

sample area into cells with an equal number of uncorrelated

dislocations in each cell. In contrast to the original Wilkens

model, the dislocation displacement field is not restricted to

the cell containing the dislocation but penetrates into other

cells. The peaks are qualitatively similar for all correlation

types. They possess the same q�3 asymptote at large q.

The correlation function (36) is slightly modified with

respect to the original form (1) to allow smooth calculation of

the Fourier integral. We show in Appendix A that this modi-

fication is practically undistinguishable from the bulky

formula derived by Wilkens for his restrictedly random

dislocation distribution. The dislocation density obtained from

the fit of the Fourier-transformed correlation function (36) to

the Monte Carlo calculated peaks practically coincides with

the density chosen as input to the Monte Carlo calculations.

This justifies the use of equation (36) for the dislocation

density determination from the experimental peaks. The

second parameter of the fit, the cutoff length, is close to the

correlation length of the dislocation pair distribution only in

high-order reflections, gb  5. This cutoff length can be safely

used to estimate elastic energy stored in the dislocated crystal.

For low reflection orders, the cutoff length depends on the

type of correlations and on the reflection order. We consid-

ered the pairs of edge dislocations formed by removing a

stripe of an atomic plane between dislocation lines (vacancy-

type pairs). A homogeneous distribution of such pairs gives

rise to asymmetric peaks. The asymmetry increases with the

reflection order and decreases when the correlation length of

the dislocation pairs is increased. The symmetric part of the

intensity is described by the same correlation function (38).

The asymmetry is described by the higher-order term and

leads to equation (41) for the intensity calculation.

APPENDIX A
Approximate expressions for G(x)

The expression (25) for the correlation function TðrÞ was

derived under the assumption r� Rc. The calculation of the

intensity distribution by the Fourier transformation (35)

requires a formula that could be used in the whole range of r

from zero to infinity. The formula (25) cannot be used in such a

range without modification, since the logarithm becomes

negative for r > Rc and the integral diverges. Although GðxÞ

is exponentially small for x  Rc, it is not possible just to take

GðxÞ = 0 for x > Rc: a rigid edge of the integration range gives

rise to unphysical oscillations when making the Fourier

transformation. Hence, one needs to replace (25) with a

function that has the same behavior as (25) for small r but

remains positive and behaves smoothly on the whole interval

ð0;1Þ. Wilkens (1970b) represented the correlation function

(25) as

GsðxÞ ¼ exp �ð1=2Þ�ðgbÞ2�x2f ð�Þ
� �

: ð42Þ

For the first reflection order, gb = 1, the argument � is defined

as � = x=2Rp. We consider the case gb = 1 first, and discuss the

gb dependence afterwards. In the restrictedly random dis-

location distribution model, Rp is the radius of cells containing

equal numbers of positive and negative positionally uncorre-
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Figure 7
Asymmetry parameters obtained by the fits of the calculated peaks for
different dislocation distributions: (a) asymmetry a and (b) asymmetry
cutoff length Ra for different correlation lengths Rc. The results of the
linear fits are shown by open symbols and those of the logarithmic fits by
full symbols.



lated dislocations. In this model, Wilkens (1970b) proposed a

bulky formula for f ð�Þ,

f ð�Þ ¼ � ln �þ
7

4
� ln 2þ

256

45��

þ
2

�
1�

1

4�2

 �Z�

0

arcsin y

y
dy

�
1

�

769

180�
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 1, and

f ð�Þ ¼
256

45��
�

11

24
þ

1

4
ln 2�

 �
1

�2
ð44Þ

for �  1. Although this formula has been cited many times in

the literature, we are not aware of its derivation. This function

is shown in Fig. 8(a) by the full line. The diffraction peak

profile obtained from it is presented, also by full lines, in

Figs. 8(b) and 8(c) on linear and logarithmic scales, respec-

tively.

Let us consider now the higher-order reflections. The

original formula by Wilkens (1970b) contained, instead of f ð�Þ
in (42), a term ½ f ð�Þ � K�, with the parameter K approximated

as K ’ 1þ ln gb. Since f ð�Þ tends to zero for �!1, the

introduction of K > 0 into (42) would result in divergence of

the Fourier integral. Later papers, e.g. Scardi & Leoni (2002),

Kužel (2007), cite the Wilkens formula without including this

term, in a way equivalent to (42). The gb dependence of K can

be included in (43) by writing lnðgb�Þ instead of ln �. This

correction agrees with our equation (25) and the results of the

Monte Carlo study (see Fig. 3). If this correction is not made,

the parameter Rp in the definition � ¼ x=2Rp, considered as a

free parameter in a fit of the diffraction peak (the cutoff

radius), will be approximately proportional to gb. We define

� ¼ gbx=2Rp in equation (42), to obtain the same cutoff radius

for all reflections.

In Fig. 8(d), thick gray lines are the result of Monte Carlo

calculation of the diffraction peaks in the restrictedly random

dislocation model. Each cell contains two pairs of dislocations

with opposite Burgers vectors. Two reflections are compared,

gb = 1 and 6. Two dislocation pairs per cell are simulated. Thin

black lines are the fits to Fourier transformation (35) of the

correlation function (42) with two fit parameters, the dis-

location density � and the cutoff radius Rp. The dislocation

density determined from the fits is � = 0.90 and 0.83 for the

two reflections. The mean distance between dislocations is

taken as the unit length, so that � = 1 is the input of the Monte

Carlo simulations. The cutoff radius obtained from the fits is

Rp = 0.55 and 0.44 for the two reflections.

Scardi & Leoni (2002) proposed to use a simplification of

the bulky formula (43), referring to van Berkum (1994),

f ð�Þ ¼ � ln �þ
7

4
� ln 2þ

�2

6
�

32�3

225�
ð45Þ

for � 
 1. The same formula (44) remains to be used for �  1.

This function is shown in Fig. 8(a) by the dashed line: it is

undistinguishable from (43) in the scale of the figure. It is also

undistinguishable when the diffraction peak is plotted in the

linear scale in Fig. 8(b). However, when the asymptotic scat-

tering is revealed in Fig. 8(c), the distinction becomes clearly

visible: formula (45) gives rise to unphysical oscillations of

period4q = 2�. The origin of these oscillations is evident. The

derivative df=d� is discontinuous at � = 1 when (45) and (44)

are used. In contrast, the original Wilkens formulas (43) and

(44) give a continuous derivative df=d� at � = 1 and can be

applied to describe the asymptotic scattering.

Kaganer et al. (2005) proposed a simple interpolation

formula for the whole range of �,

f ð�Þ ¼ � ln
�=�0

1þ �=�0

: ð46Þ

This function with �0 = 2.2 is plotted in Fig. 8(a) by the dotted

line. The deviation from the Wilkens curve is subtle. The

diffraction peaks calculated with the function (46) are shown

in Figs. 8(b) and 8(c) also by dotted lines. The deviations from

the Wilkens curves are also subtle. Hence, the simple formula

(46) can be used instead of the bulky formulas (43) and (44)
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Figure 8
(a) The function f ð�Þ defined by Wilkens (1970b) (full line), its
modification by van Berkum (1994) (dashed line) and the function (46)
used in the present work (dotted line). (b, c) Diffraction peak profiles
calculated with these three functions on linear and logarithmic scales,
respectively. (d) Diffraction peaks calculated by the Monte Carlo method
for the Wilkens restrictedly random dislocation distribution model with
two dislocation pairs per cell (thick gray lines) and fits using equations
(42)–(44) (thin black lines).



with the same accuracy. It also stresses the meaning of the

function f ð�Þ in (42): it is just an appropriate interpolation

function that behaves as � lnðgbxÞ at x! 0, remains positive

on ð0;1Þ and tends to zero at x!1. The constant �0 can be

absorbed in the definition of the cutoff radius. These proper-

ties explain the choice of the correlation function (36).
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